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University of California, Berkeley
Physics H7B Spring 1999 (Strovink)

SOLUTION TO EXAMINATION 1

Directions. Do all four problems (weights are indicated). This is a closed-book closed-note exam
except for one 81

2 ×11 inch sheet containing any information you wish on both sides. You are free to
approach the proctor to ask questions – but he or she will not give hints and will be obliged to write
your question and its answer on the board. Don’t use a calculator, which you don’t need – roots,
circular functions, etc., may be left unevaluated if you do not know them. Use a bluebook. Do not
use scratch paper – otherwise you risk losing part credit. Cross out rather than erase any work that
you wish the grader to ignore. Justify what you do. Box or circle your answer.

1. (25 points) A heat engine for which the work-
ing material is an ideal monatomic gas moves
slowly enough that all parts of it are always in
mutual equilibrium. It is described by a rect-
angular path on the T (absolute temperature) –
S (entropy) plane, as in the figure. While on
the path 1 → 2, the gas in the engine takes heat
from a bath at high temperature T1; on the path
3 → 4, it returns heat to bath at lower tempera-
ture T3. On the paths 2 → 3 and 4 → 1, the en-
tropy has constant values S3 and S1, respectively.

a. (5 points) Write down the net change

(∆U23 +∆U41)

in internal energy for the sum of the two
paths 2 → 3 and 4 → 1.

b. (5 points) Compute the net change
∮

12341

T dS

over one complete cycle of the engine.

c. (8 points) Deduce the value of the mechan-
ical work ∮

12341

p dV

done by the gas on the rest of the universe
over one complete cycle of the engine.

d. (7 points) In one cycle, what fraction of the
heat withdrawn from the hot reservoir is
converted to mechanical work done by the
gas on the rest of the universe?

Hint: Keep in mind that the only parameters
given in this problem are T1, T3, S1, and S3;
your answers, if nontrivial, must be expressed in
terms of these parameters.

Solution:
(a.)
U of an ideal gas is a function only of T , so the
isothermal segments 1 → 2 and 3 → 4 cause no
change in U . Therefore

(∆U23 +∆U41) =
∮

12341

dU = 0

because U is a state function.
(b.)

∮
12341

T dS = (T1 − T3)(S3 − S1) ,

the area of the rectangle in the figure.
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(c.)
∮

12341

p dV = −
∮

12341

δW

= −
∮

12341

dU +
∮

12341

δQ

= 0 +
∮

12341

T dS

= (T1 − T3)(S3 − S1) .

(d.)
∮
12341

p dV

Q2
=

∮
12341

p dV∫ 2

1
T dS

=
(T1 − T3)(S3 − S1)
T1(S3 − S1)

= 1− T3

T1
.

It is also acceptable to state that this is a Carnot
engine and quote this standard result for its ef-
ficiency.

2. (25 points) In a hypothetical one-dimensional
system, thermal motion of atoms in the y and
z directions is “frozen out”, so, effectively, the
atoms are able to move only in the x direc-
tion. In that direction, an atom has velocity v
(−∞ < v <∞). The fraction dF of atoms with
velocity between v and v + dv is

dF ≡ fv(v) dv =
exp

(−mv2

2kT

)
dv∫ ∞

−∞ exp
(−mv2

2kT

)
dv
,

where fv(v) is the probability density (RHK:
“relative probability”) of the value v, m is the
atomic mass, k is Boltzmann’s constant, and T
is the absolute temperature.

a. (10 points) Calculate the mean value of the
square of v, i.e. 〈v2〉. If you wish, you may
leave your answer in the form of a ratio of
definite integrals. Do not merely guess the
answer.

b. (15 points) Define E to be the kinetic energy
1
2mv

2 of an atom. The fraction dF of atoms
with kinetic energy between E and E+dE is

dF ≡ fE(E) dE ,

where fE(E) is the probability density of
the value E. One might imagine fE(E) to
take the possible forms:

fE(E) ∝ E−1/2 exp
(
− E

kT

)
?

∝ exp
(
− E

kT

)
?

∝ E1/2 exp
(
− E

kT

)
?

∝ E exp
(
− E

kT

)
?

Which one form is correct, and why?

Solution:
(a.)
From the definition of it that is given, this prob-
ability density is explicitly normalized:

∫ ∞

−∞
fv(v) dv ≡ 1 .

Using the standard method for taking the aver-
age, when fv is normalized,

〈v2〉 =
∫ ∞

−∞
v2fv dv

=

∫ ∞
−∞ v

2 exp
(−mv2

2kT

)
dv∫ ∞

−∞ exp
(−mv2

2kT

)
dv

.

This answer is enough to earn full credit. For
completeness, defining β ≡ 1/kT and u ≡ 1

2mv
2,

we can rewrite this quotient as

〈v2〉 =
2
m

∫ ∞
−∞ u

1/2 exp (−βu) du∫ ∞
−∞ u

−1/2 exp (−βu) du

= − 2
m

∂

∂β
ln

(∫ ∞

−∞
u−1/2 exp (−βu) du

)

= − 2
m

∂

∂β
ln (Cβ−1/2)

=
1
mβ

=
kT

m
,
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where, in the above, C is a constant whose value
is immaterial here.

(b.)
dF ≡ fE(E) dE

fE =
dF

dE

=
dF

dv

dv

dE

≡ fv(v)
dv

dE

=
fv(v)

d
dv (

1
2mv

2)

=
fv(v)
mv

∝ exp
(− E

kT

)
E1/2

.

3. (25 points)

A fixed line charge of +λ esu/cm on the x
axis extends from x = D to x = 2D, and a fixed
line charge of −λ esu/cm on the y axis extends
from y = D to y = 2D.

a. (10 points) Find the work required to bring
a test point charge q from infinity to the ori-
gin. Does your answer depend on the path
you chose? If so, specify the path.

b. (15 points) Calculate the mechanical force
(magnitude and direction) that is required
to keep the test charge at the origin.

Solution:
(a.)
For every positive charge element that is a cer-

tain distance from the origin, there is a corre-
sponding negative charge element located at the
same distance from the origin (but in an orthog-
onal direction). Therefore, by symmetry, the
electrostatic potential φ vanishes at the origin,
as does the work W required to bring the charge
in from infinity:

W = q
(
φ(0)− φ(∞)

)
= 0 .

(b.)
From the positive part of the charge distribution,
the electric field at the origin is

E+ = −x̂
∫ 2D

D

λ

x2
dx

= −x̂
( λ
D

− λ

2D

)

= −x̂ λ
2D

.

Likewise, from the negative part of the charge
distribution,

E− = +ŷ
λ

2D
.

The total electric field is

E = E+ +E− =
ŷ − x̂√

2
λ

D
√
2
.

The mechanical force F required to keep the test
charge at the origin must oppose qE:

F =
x̂− ŷ√

2
qλ

D
√
2
,

where the first factor is its direction (at −45◦ to
the x axis), and the second is its magnitude.

4. (25 points) The infinite plane z = 0 car-
ries a uniform surface charge density σ esu/cm2.
There are no other charges in the problem.
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a. (5 points) Find the magnitude and direc-
tion of the electric field E+ everywhere in
the region z > 0.

b. (5 points) Find the magnitude and direc-
tion of the electric field E− everywhere in
the region z < 0.

c. (8 points) Consider a spherical surface of
radius R centered at the origin. Find the
electric flux ∫∫

E · da

through the top half (top hemisphere) of
this surface.

d. (7 points) Consider a second spherical sur-
face, again of radius R, but now centered
at the point (0, 0, 2R), so that it does not
enclose any charge. Find the electric flux

∫∫
E · da

through the bottom half (bottom hemi-
sphere) of this surface.

Solution:
(a.) (b.)
The charge distribution is symmetric about the
plane z = 0, so

E+ = −E− ,

and both fields are normal to the z = 0 plane.
Using a Gaussian pillbox with flat surface area

A parallel to the z = 0 plane,
∮

E · da = 4πQencl

((E+)z − (E−)z)A = 4πσA
((E+)z + (E+)z)A = 4πσA
(E+)z = −(E−)z = 2πσ

E+ = −E− = ẑ 2πσ .

It is acceptable simply to recall that the electric
field on either side of an infinite sheet of charge
has this value, in the absence of other charges.
(c.)
Again because the charge distribution is sym-
metric about the plane z = 0, substituting a
sphere of radius R centered at the origin for the
Gaussian pillbox used in the solution of part (a.),

∫∫ top

hemi

E · da =
∫∫ bot

hemi

E · da = 1
2
4πQencl

∫∫ top

hemi

E · da = 1
2
4ππR2σ

= 2π2R2σ .

(d.)
Because E is constant throughout the semi-
infinite region z > 0, the flux of E through the
top of the hemisphere centered at (0, 0, 2R) is
the same as the flux in part (c.) through the
top of the hemisphere centered at the origin.
Since the hemisphere centered at (0, 0, 2R) con-
tains no charge, the flux of E through its bottom
half must cancel the flux through its top half.
Therefore

∫∫ bot

hemi

E · da = −2π2R2σ .


